
62
Fast Algorithms for Structured

Matrix Computations

Michael Stewart
Georgia State University

62.1 Classes of Structured Matrices . 62-1
62.2 Transformations of Structured Matrices 62-6
62.3 Generalized Schur Algorithms . 62-8
62.4 Schur Algorithms for Positive Definite Matrices . . . 62-10

62.5 Fast Algorithms for Cauchy-like Systems 62-12

62.6 Fast Algorithms for Toeplitz-like Systems 62-13

62.7 Fast Algorithms for Vandermonde Systems 62-15

62.8 Superfast Algorithms . 62-17

References . 62-19

A structured matrix is an m×n matrix with elements that can be determined from substan-
tially fewer than mn parameters. This is a broad definition that includes sparse matrices,
matrices with displacement structure, matrices with rank structure, and numerous types of
matrices with specialized structure. Many common matrix operations can be performed us-
ing fast algorithms that exploit matrix structure to achieve asymptotic speed-up relative to
conventional algorithms. For matrices with either displacement structure or rank structure,
there are fast algorithms for the solution of linear systems, inversion, QR factorization, and
matrix-vector multiplication. Fast algorithms typically achieve a factor of n speed-up over
their conventional counterparts. Algorithms that do better than this are sometimes referred
to as superfast.

This chapter focuses on methods for dense matrices with structure. The emphasis is on
direct methods, with some limited coverage of the use of fast matrix-vector multiplication
in iterative methods and the choice of preconditioners for structured systems. Displacement
structure is used as a unifying context for the presentation of many of the fast algorithms.
Toeplitz, Vandermonde, and Cauchy matrices are covered in detail. A notable omission is
the topic of fast algorithms for matrices with rank structure.

Unless otherwise noted, all matrices are assumed to be complex.

62.1 Classes of Structured Matrices

Displacement equations were introduced to derive factorization algorithms and inversion
formulas for matrices with an almost Toeplitz structure [FMK79]. Since then the concept has
been generalized and has served as a unifying concept in the study of algorithms for a wide
range of structured matrices. This approach allows uniform derivation of fast algorithms
for LU , QR, and Cholesky factorization of Toeplitz, Vandermonde, Cauchy, Hankel, and
related matrices.

62-1

62-2 Handbook of Linear Algebra

Definitions:

Let A ∈ Cm×n, E ∈ Cm×m, G ∈ Cm×m, F ∈ Cn×n and H ∈ Cn×n.

Let the vector vn(α) be given by

vn(α) =
[
1 α α2 · · · αn−1

]T
and pn(α) by

pn(α) =
[
p0(α) p1(α) · · · pn−1(α)

]T
,

where each pk(α) is a polynomial of degree k and α ∈ C.

Given a vector v ∈ Cn, Dv is the n× n diagonal matrix with diagonal elements taken in order

from the elements of v.

The matrix Zn = [zjk] is the n× n downshift matrix given by zjk = 1 for j = k+ 1 and zjk = 0

otherwise.

The matrix Zδ,n denotes Zn + δe1e
∗
n.

The matrix Σp,q is the signature matrix Σp,q = Ip ⊕−Iq.
A matrix T = [tjk] ∈ Cm×n is Toeplitz if tjk = tj−k, that is if its elements are constant along

diagonals.

A Toeplitz matrix S = [sjk] ∈ Cn×n is circulant if sjk = s(j−k)modn.

A matrix H = [hjk] ∈ Cm×n is Hankel if hjk = hj+k; that is, if its elements are constant along

cross diagonals.

A matrix V ∈ Cm×n is Vandermonde if

V =


vn(α1)T

vn(α2)T

...

vn(αm)T


for some set of distinct complex nodes {α1, α2, . . . , αn}. Some authors use the transpose of V as

the definition of a Vandermonde matrix.

Given a set of p distinct complex nodes {α1, α2, . . . , αp} and a multiset of size n formed from

the αk by including nk repetitions of αk, where
∑p
k=1 nk = n, a matrix V ∈ Cm×n is confluent

Vandermonde if

V =


V1(α1)

V2(α2)
...

Vp(αp)

 ,
where

Vk(α) =


vn(α)T

v′n(α)T

...

v
(nk−1)
n (α)T

 .
A matrix V ∈ Cm×n is polynomial Vandermonde if

V =


pn(α1)T

pn(α2)T

...

pn(αm)T


for some set of distinct complex nodes {α1, α2, . . . , αn}.

Fast Algorithms 62-3

A matrix C = [cjk] ∈ Cm×n is Cauchy if cjk = 1/(αj − βk) for αj 6= βk, j = 1, . . . ,m and

k = 1, . . . , n.

An operator ∆: Cm×n → Cm×n of the form

∆(A) = A−GAH∗

is a Stein type displacement operator.

An operator ∆: Cm×n → Cm×n of the form

∆(A) = EA−AH∗

is a Sylvester type displacement operator.

An operator ∆: Cm×n → Cm×n of the form

∆(A) = EAF ∗ −GAH∗

is a general displacement operator.

The displacement rank of a matrix A with respect to a given displacement operator ∆ is the

rank of ∆(A).

An equation of the form

∆(A) = A−GAH∗ = XY ∗, (62.1)

where A ∈ Cm×n, X ∈ Cm×r, and Y ∈ Cn×r with r = rank(∆(A)) is a Stein type displacement

equation.

An equation of the form

∆(A) = EA−AH∗ = XY ∗, (62.2)

where A ∈ Cm×n, X ∈ Cm×r, and Y ∈ Cn×r with r = rank(∆(A)) is a Sylvester type

displacement equation.

An equation of the form

EAF ∗ −GAH∗ = XY ∗, (62.3)

where A ∈ Cm×n, X ∈ Cm×r, and Y ∈ Cn×r with r = rank(∆(A)) is a general displacement

equation.

Given a displacement equation ∆(A) = XY ∗, the matrices X and Y are generators of A.

A matrix T ∈ Cm×n is Toeplitz-like with displacement rank r if T satisfies a displacement

equation of the form

T − ZmTZ∗n = XY ∗ (62.4)

or

Z∗1,mT − TZ∗δ,n = XY ∗, (62.5)

where X ∈ Cm×r and Y ∈ Cn×r.
A matrix H ∈ Cm×n is Hankel-like with displacement rank r if H satisfies a displacement

equation of the form

ZmH −HZ∗n = XY ∗,

where X ∈ Cm×r and Y ∈ Cn×r.
A matrix V ∈ Cm×n is Vandermonde-like with displacement rank r if V satisfies a displace-

ment equation of the form

DvV − V Zδ,n = XY ∗, (62.6)

where X ∈ Cm×r and Y ∈ Cn×r.
A matrix C ∈ Cm×n is Cauchy-like with displacement rank r if C satisfies a displacement

equation of the form

DvC − CDw = XY ∗, (62.7)

where X ∈ Cm×r and Y ∈ Cn×r.

62-4 Handbook of Linear Algebra

Facts:

1. Fast algorithms often exploit the fact that a matrix has low displacement rank with
respect to a particular displacement operator. However, as seen in Eq. (62.5) and
Eq. (62.4), the choice of displacement equation used to define a specific class of struc-
tured matrices can vary. Different displacement equations yield different algorithms.
What is important algorithmically is that the displacement rank should not vary
greatly with the particular choice of displacement operator.

2. [Dav79] A circulant matrix S ∈ Cn×n commutes with the cyclic shift matrix and
therefore satisfies the displacement equation

Z∗1,nS − SZ∗1,n = 0.

If s∗j denotes row j of S, then this displacement equation is equivalent to s∗j+1 = s∗jZ
∗
1,n

so that the rows of a circulant are generated by repeated cyclic shifting of the first
row.

3. A Toeplitz matrix T ∈ Cm×n has displacement rank at most two with respect to the
displacement equations

T − ZmTZ∗n =


t0 0
t−1 t−1

...
...

t−m+1 t−m+1


[
1 t1/t0 · · · tn−1/t0
0 −t1/t0 · · · −tn−1/t0

]
(62.8)

and

Z∗1,mT − TZ∗δ,n =
t−1 − δtn−1 0

...
...

t−m+1 − δt−m+n+1 0
t0 − δt−m+n 1


[
1 0 · · · 0
0 t1 − t−m+1 · · · tn−1 − t−m+n−1

]
. (62.9)

4. A Hermitian Toeplitz matrix T ∈ Cn×n with t0 > 0 satisfies

T − ZnTZ∗n = XΣ1,1X
∗,

where

X∗ =

[√
t0 t1/

√
t0 · · · tn−1/

√
t0

0 t1/
√
t0 · · · tn−1/

√
t0

]
. (62.10)

5. A Hankel matrix H ∈ Cm×n has displacement rank two with respect to the displace-
ment equation ∆(H) = ZmH −HZT

n = XY ∗.
6. A Vandermonde matrix V ∈ Cm×n with nodes α1, . . . , αm has displacement rank one

with respect to the displacement equation

DvV − V Zδ,n =

α
n
1 − δ

...
αnm − δ

 [0 · · · 0 1
]
, (62.11)

where v = [αj]
m
j=1 ∈ Cm.

Fast Algorithms 62-5

7. A Cauchy matrix C ∈ Cm×n has displacement rank 1 with respect to

DvC − CDw =


1
1
...
1

 [1 1 · · · 1
]
,

where v = [αj]
m
j=1 ∈ Cm and w = [βj]

n
j=1 ∈ Cn.

8. [SK95] A displacement operator ∆: Cm×n → Cm×n is a linear transformation. If ∆ is
invertible, then it is possible to fully reconstruct A from ∆(A). A general displacement
operator with lower triangular E = [ejk]mj,k=1, F = [fjk]nj,k=1, G = [gjk]mj,k=1, and
H = [hjk]nj,k=1 is invertible if and only if

ejjfkk − gjjhkk 6= 0

for all choices of j and k. This fact can be specialized. A Sylvester type displacement
operator is invertible if and only if ejj − hkk is always nonzero. A Stein type dis-
placement operator is invertible if and only if 1 − gjjhkk is always nonzero. Related
conditions can be stated in terms of the generalized eigenvalues of the matrix pencils
E − λG and F − λH, in which case the assumption of triangularity of E, F , G, and
H can be dropped. The triangular case covers all displacement operators associated
with the algorithms considered in this chapter.

9. Several displacement equations allow simple reconstruction of A from ∆(A) = XY ∗.
If Gk = 0 or Hk = 0 and if A satisfies the Stein type displacement equation (62.1),
then

A =

k−1∑
j=0

(G)jXY ∗(H∗)j .

If A satisfies an invertible Sylvester type displacement equation with E = De, then
row j of A, denoted by a∗j , can be obtained by solving

a∗j (ejI −H∗) = x∗jY
∗,

where x∗j is row j ofX. If A satisfies an invertible Sylvester type displacement equation
with E = De and H = Dh, then individual elements of A can be computed from the
formula

ajk =
x∗jyk

ej − hk
,

where y∗k is row k of Y .

Examples:

1. Given the multiset of nodes {α1, α1, α1, α2, α2}, a 5 × 5 confluent Vandermonde matrix

formed from these nodes is

V =


1 α1 α2

1 α3
1 α4

1

0 1 2α1 3α2
1 4α3

1

0 0 2 6α1 12α2
1

1 α2 α2
2 α3

2 α4
2

0 1 2α2 3α2
2 4α3

2

 .

62-6 Handbook of Linear Algebra

2. The Toeplitz matrix

T =

4 2 1

2 4 2

1 2 4


has displacement rank two with respect to the Stein type displacement equation

T − Z3TZ
∗
3 =

4 2 1

2 0 0

1 0 0

 =

 2 0

1 1

1/2 1/2

[1 0

0 −1

] [
2 1 1/2

0 1 1/2

]
.

This example illustrates Eq. (62.4).

62.2 Transformations of Structured Matrices

A structured matrix satisfying a displacement equation in which E, F , G, and H are all
either diagonal matrices or shifts can be transformed to a Cauchy-like matrix using the
discrete Fourier transform [Hei94, GKO95]. Such transformations are of great numerical
significance. Most matrix structures are not preserved by the pivoting schemes typically used
to stabilize Gaussian elimination. Cauchy-like structure is the exception; permuting the rows
or columns of a Cauchy-like matrix results in another Cauchy-like matrix. Consequently,
various pivoting schemes can be incorporated into fast solvers for Cauchy-like systems,
making such solvers numerically robust even on indefinite and non-Hermitian systems. By
first transforming a structured matrix to a Cauchy-like matrix, numerically robust solvers for
Cauchy-like systems can be applied to Toeplitz, Hankel, Vandermonde, and other matrices
with related displacement structures.

Definitions:

Let the n× n matrix Fn = [fjk] = 1√
n

[ω
(j−1)(k−1)
n], where ωn = ei2π/n, denote the unitary n× n

discrete Fourier transform matrix.

Facts:

Let δ denote a positive real number and δ1/n its positive nth root.

1. [Dav79]An n× n circulant matrix S with first row equal to

sT =
[
s0 s1 · · · sn−1

]
has eigenvalue decomposition

S = FnDvF
∗
n (62.12)

where v =
√
nFns.

2. [Hei94, HB97] The shift matrices Z1,n, Z−1,n, and Zδ,n satisfy

F ∗nZ
∗
1,nFn = Dvn(ωn),

F ∗nD
∗
vn(ω2n)

Z∗−1,nDvn(ω2n)Fn = ω2nDvn(ωn),

and
F ∗nD

−1
vn(δ1/n)

Z∗δ,nDvn(δ1/n)Fn = δ1/nDvn(ωn).

Fast Algorithms 62-7

3. [Hei94, HB97] If T ∈ Cm×n is a Toeplitz-like matrix satisfying

Z∗1,mT − TZ∗−1,n = XY ∗,

then C = F ∗mTDvn(ω2n)Fn is a Cauchy-like matrix satisfying

Dvm(ωm)C − C(ω2nDvn(ωn)) = F ∗mXY
∗Dvn(ω2n)Fn. (62.13)

If m = n, then the sets of diagonal elements of Dvm(ωm) and ω2nDvn(ωn) are disjoint
and the matrix C satisfying Eq. (62.13) is uniquely determined.

4. [Gu98b] If T ∈ Cm×n is a Toeplitz-like matrix satisfying

Z∗1,mT − TZ∗δ,n = XY ∗,

then C = F ∗mTDvn(δ1/n)Fn is a Cauchy-like matrix satisfying

Dvm(ωm)C − C(δ1/nDvn(ωn)) = F ∗mXY
∗Dvn(δ1/n)Fn. (62.14)

If δ > 1, then the sets of diagonal elements of Dvm(ωm) and δ1/nDvn(ωn) are disjoint
and the matrix C satisfying Eq. (62.14) is uniquely determined.

5. If V ∈ Cm×n is a Vandermonde-like matrix satisfying Eq. (62.6) with δ > 0, then
C = V D−1

vn(δ1/n)
Fn is a Cauchy-like matrix satisfying

DvC − C(δ1/nD∗vn(ωn)
) = XY ∗D−1

vn(δ1/n)
Fn. (62.15)

If
δ1/n < min

i
|αi| or δ1/n > max

i
, |αi|

then the sets of diagonal elements of δ1/nDvn(ωm) and Dv are disjoint and the matrix
C satisfying Eq. (62.15) is uniquely determined.

6. [HB97] Transformations of other structured matrices to Cauchy-like matrices can also
be accomplished using real trigonometric transformations. Such transformations can
be used to avoid the use of complex arithmetic.

Examples:

1. The Toeplitz matrix

T =

1 1 1

1 1 1

1 1 1


satisfies the displacement equation

Z∗1,3T − TZ∗−1,3 = xy∗ =

2

2

2

[1 0 0
]

and can be transformed to the Cauchy-like matrix

C = F ∗3 TDv3(ω6)F3 =

1 + ω6 + ω2
6 1 1− ω6 − ω2

6

0 0 0

0 0 0

 ,
which satisfies the displacement equation

Dv3(ω3)C − ω6CDv3(ω3) =

2
√

3

0

0

[1√
3

1√
3

1√
3

]
= (F ∗3 x)(y∗Dv3(ω6)F3).

This example illustrates Fact 3.

62-8 Handbook of Linear Algebra

62.3 Generalized Schur Algorithms

It is a remarkable fact that under very general conditions the displacement structure of a
matrix is inherited by its Schur complement. In particular, if E, F , G, and H are lower
triangular, and if A = [Ajk] with a11 6= 0 has displacement rank r with respect to Eq. (62.3),
then the Schur complement of a11 in A has displacement rank r with respect to a related
displacement equation. The generators of the Schur complement can be computed from
those of A using simple recurrences. Gaussian elimination can be interpreted as recursive
Schur complementation so that an LU factorization of A, when it exists, can be computed
using operations acting solely on the generators of A. This describes in outline the com-
mon features of the large class of fast generalized Schur algorithms for structured matrix
factorization.

Instead of describing a Schur algorithm for the most general type of displacement struc-
ture, we focus on two specific equations that allow for particularly simple generator updates.
The first equation is the Sylvester type displacement equation in which E and H are lower
triangular. The second is the Stein type displacement equation in which G and H are strictly
lower triangular.

Definitions:

Generators X and Y of a matrix satisfying a displacement equation are in proper form if

X =

[
x11 0

x21 X22

]
, and Y =

[
y11 0

y21 Y22

]
. (62.16)

Facts:

Partition the m× n matrix A as

A =

[
a11 a∗12
a21 A22

]
and assume a11 6= 0. Let AS = A/[a11] = A22 − 1

a11
a21a

∗
12 be the Schur complement of

a11 in A. The recurrences given here for computing generators of Schur complements have
appeared in many papers in either more specialized or more general forms. They can be
viewed in specialized forms of the general recurrences in [SK95].

The pseudocode presentation of each of the Schur algorithm variants uses recursion with
the recursive function applied to structured Schur complements of decreasing size. No ex-
plicit termination criterion is given. The functions being defined compute triangular factors
or generators of a matrix inverse. In actual implementation, the recursion would terminate
when the function is called on a Schur complement that is small enough that a conventional
factorization or inversion algorithm can be applied.

1. If A satisfies the Stein type displacement equation (62.1) with strictly lower triangular
G and H partitioned as

G =

[
0 0

g21 G22

]
, and H =

[
0 0

h21 H22

]
,

and generators X and Y in proper form (62.16), then AS satisfies the displacement
equation

AS −G22ASH
∗
22 = XSY

∗
S

where

Fast Algorithms 62-9

XS =
[
G22x21 + g21x11 X22

]
,

YS =
[
H22y21 + h21y11 Y22

]
.

(62.17)

The first column and row of A can be computed from the generators X and Y by
using [

a11 a∗12
]

= x11
[
y11 y∗21

]
, and a21 = x21y11. (62.18)

Given generators X and Y for A that are not in proper form, when a11 6= 0 it is
possible to compute an invertible square matrix V such that XV and Y V −∗ are
proper form generators for A. The construction of such a transformation when A is
positive definite and Y = XΣp,q is described in Section 62.4. The transformation of
the generators to proper form can be accomplished using O((m+ n)r) operations. If
the complexity of matrix-vector multiplication with G and H is O(m+ n), then the
generators of AS can be computed using O((m+ n)r) operations.

2. If A satisfies a Sylvester type displacement equation (62.2) with lower triangular E
and H partitioned as

E =

[
e11 0
e21 E22

]
and H =

[
h11 0
h21 H22

]
,

and generators X and Y partitioned as[
x∗1
X2

]
and

[
y∗1
Y2

]
,

then AS satisfies the displacement equation

E22AS −ASH∗22 = XSY
∗
S

where

XS = X2 − 1
a11

a21x
∗
1,

YS = Y2 − 1
a11

a12y
∗
1.

(62.19)

The first column and row of A can be obtained by solving

(E − h11I)

[
a11
a21

]
=

[
x∗1
X2

]
y1,

[
a11 a∗12

]
(e11I −H∗) = x∗1

[
y1 Y ∗2

]
.

(62.20)

If E and H are banded with bandwidth that does not depend on n, then the systems
can be solved using O(m+ n) operations and the generators of AS can be computed
using O((m+ n)r) operations.

3. If all leading principal minors of A are nonzero and if A satisfies either a Stein type
displacement equation with strictly lower triangular G and H or a Sylvester displace-
ment equation with lower triangular E and H, then repeated Schur complementation
using the generator recurrences can be used to compute an LU factorization. The
result is Algorithm 62.1. If m > n and if the displacement equations are such that
generator updates require O((m+n)r) operations, then the complexity of LU factor-
ization is O(rmn).

62-10 Handbook of Linear Algebra

Algorithm 62.1 (Generalized Schur Algorithm)

Let A be an m×n matrix with nonzero leading principal minors and satisfying Eq. (62.1)

(or Eq. (62.2)). The function (L,U) = GSchur(X,Y,E, F,G,H) computes an LU fac-

torization of A. For the Stein equation it is assumed that E = I and F = I. For the

Sylvester equation it is assumed that F = I and G = I.

function (L,U) = GSchur(X,Y,E, F,G,H)

If the displacement is of Stein type

Then Transform G and H to proper form.

Let
[
u11 u∗12

]
=
[
a11 a∗12

]
using Eq. (62.18) (or Eq. (62.20)).

l21 = 1
a11

a21 using Eq. (62.18) (or Eq. (62.20)).

Compute XS and YS using Eq. (62.17) (or Eq. (62.19)).

Let L =

[
1 0

l21 L22

]
, U =

[
u11 u∗12
0 U22

]
where (L22, U22) = GSchur(XS , YS , E22, F22, G22, H22).

4. [KC94] Given an n× n invertible structured matrix, the generalized Schur algorithm
can be applied to the augmented matrix

M =

[
A I
I 0

]
to compute a generator representation of the inverse of a structured matrix. The Schur
complement of A in M is −A−1. If A satisfies the displacement equation E1A−AH∗1 =
X11Y

∗
11 and if lower triangular E2 and H2 can be chosen so that E2 −H∗1 = X21Y

∗
21

and E1 −H∗2 = X12Y
∗
12 both have low rank, then M has low displacement rank with

respect to

(E1 ⊕ E2)M −M(H1 ⊕H2)∗ =

[
X11 X12 0

0 0 X21

]Y ∗11 0
0 Y ∗12
Y ∗21 0

 .
Using this displacement representation of M , n steps of the Sylvester form of Algo-
rithm 62.1 can be applied to the generators of M to compute generators of −A−1.
If A satisfies the Stein type equation A−G1AH

∗
1 = X11Y

∗
11 and it is possible to choose

strictly lower triangular G2 and H2 so that I − G2H
∗
1 = X21Y

∗
21 and I − G1H

∗
2 =

X12Y
∗
12 both have low rank, then M has low displacement rank with respect to

M − (G1 ⊕G2)M(H1 ⊕H2)∗ =

[
X11 X12 0

0 0 X21

]Y ∗11 0
0 Y ∗12
Y ∗21 0

 ,
so that the Stein form of Algorithm 62.1 can be used to compute generators of −A−1.
This approach is applicable to Toeplitz matrices, in which case G1 and H1 are shift
matrices and G2 and H2 can also be chosen to be shift matrices. Other augmented ma-
trices can be used to achieve other ends, including QR factorization and the solution
of a linear system.

62.4 Schur Algorithms for Positive Definite Matrices

The Stein variant of the generalized Schur algorithm can be adapted to compute the
Cholesky factorization of a Hermitian positive definite structured matrix. In the case of

Fast Algorithms 62-11

a positive definite Toeplitz matrix, the algorithm has been widely used; see Section 62.6.
The approach can be applied to any n× n positive definite matrix A satisfying a displace-
ment equation of the form A−GAG∗ = XΣp,qX

∗ where G is strictly lower triangular. The
algorithm is simply the Stein variant of Algorithm 62.1 with a transformation to proper
form accomplished using Σp,q-unitary transformations.

Definitions:

For a given signature matrix Σp,q, a matrix S satisfying S∗Σp,qS = Σp,q is Σ-unitary with respect

to the signature Σp,q.

A matrix

S =
1√

1− |ρ|2

[
1 ρ

ρ 1

]
,

where |ρ| < 1, is a hyperbolic rotation.

Facts:

1. If A is symmetric and if the displacement A − GAG∗ has p positive and q negative
eigenvalues, then there is always a factorization of the displacement A − GAG∗ =
XΣp,qX

∗. Such generators can be obtained using a variety of standard matrix de-
compositions applied to the displacement, including truncated LDL∗ factorization.
However, in considering such a factorization, it is important to note that Bunch-
Parlett pivoting [GV96] is more reliable than Bunch-Kaufman pivoting in revealing
rank deficiency in the displacement [SV97]. In most cases, generators are obtained us-
ing a more direct formula, or even an explicit formula in terms of the matrix elements
as in Eq. (62.10).

2. A hyperbolic rotation can be computed and applied to introduce zeros into a column
or row vector. If |x| > |y| and ρ = −y/x, then

1√
1− |ρ|2

[
1 ρ
ρ 1

] [
x
y

]
=

[
x
|x|

√
|x|2 − |y|2

0

]
and

1√
1− |ρ|2

[
x y

] [1 ρ
ρ 1

]
=
[
x
|x|

√
|x|2 − |y|2 0

]
.

3. A hyperbolic rotation is Σ-unitary with respect to the signature Σ1,1. A (p+q)×(p+q)
hyperbolic rotation

S = Ij−1 ⊕


1√

1−|ρ|2
0 ρ√

1−|ρ|2

0 Ik−j−1 0
ρ√

1−|ρ|2
0 1√

1−|ρ|2

⊕ Ip+q−k
acting in rows (or columns) j and k where j ≤ p and k > p is Σ-unitary with respect
to Σp,q.

4. A hyperbolic rotation has triangular factorizations

1√
1− |ρ|2

[
1 ρ
ρ 1

]
=

[
1 0

ρ
√

1− |ρ|2

][1√
1−|ρ|2

ρ√
1−|ρ|2

0 1

]
and

1√
1− |ρ|2

[
1 ρ
ρ 1

]
=

 1√
1−|ρ|2

0

ρ√
1−|ρ|2

1

[1 ρ

0
√

1− |ρ|2

]
.

62-12 Handbook of Linear Algebra

For numerical stability, it is necessary to multiply by hyperbolic rotations in factored
form, that is by multiplying by the triangular factors in sequence [BBV87]. For a
hyperbolic rotation S, the first formula is stable for products of the form SX and the
second is stable for products of the form XS.

5. For a symmetric positive-definite matrix A satisfying A − GAG∗ = XΣp,qX
∗, the

Stein type generalized Schur can be arranged to compute a Cholesky factorization
A = C∗C. The result is Algorithm 62.2. It can be shown that the matrix A is positive
definite if and only if |x̂11| > |x̂13| in each recursive application of Algorithm 62.2.

Algorithm 62.2 (Positive Definite Generalized Schur Algorithm)

Given an n× n positive definite matrix A satisfying A−GAG∗ = XΣp,qX
∗ for strictly

lower triangular G, the function PDGSchur(X,G) computes the Cholesky factorization

A = C∗C.

function C = PDGSchur(X,G)

Let X

[
U 0

0 V

]
=

[
x11 0 x13 0

x21 X22 x23 X24

]
where U and V are p× p and q × q Householder transformations.

X

[
U 0

0 V

]
S =

[
x̂11 0 0 0

x̂21 X22 x̂23 X24

]
where S is a hyperbolic rotation acting in columns 1 and p+ 1

with ρ = −x13/x11.

XS =
[
e21x̂11 + E22x̂21 X22 x̂23 X24

]
C =

[
x̂11 x̂∗21
0 C22

]
, where C22 = PDGSchur(XS , G22).

62.5 Fast Algorithms for Cauchy-like Systems

Row and column permutations destroy most types of displacement structure. Consequently
it is not generally possible to introduce pivoting for stability into most fast algorithms.
Cauchy-like matrices, however, are an important exception. This advantage often motivates
a preliminary transformation of matrices with other structures to Cauchy-like form prior to
applying the generalized Schur algorithm.

Facts:
1. If P and Q are permutations and C is a Cauchy-like matrix satisfying Eq. (62.7),

then the matrix PCQ satisfies

D̂vPCQ− PCQD̂w = PXY ∗Q,

where D̂v = PDvP
∗ and D̂w = Q∗DwQ. Thus, PCQ is also a Cauchy-like matrix

and pivoting schemes can be incorporated into fast solvers for Cauchy-like systems.
The paper [Hei94] introduced the idea of transforming other structured matrices to
Cauchy-like form in order to exploit pivoting and thereby improve the stability of fast
algorithms, particularly algorithms applied to indefinite or nonsymmetric matrices.
The paper presented a number of O(n2) and O(n log3(n)) methods.

2. The use of the Sylvester variant of Algorithm 62.1, in combination with partial piv-
oting, was investigated in [GKO95], where experiments were presented to illustrate

Fast Algorithms 62-13

the numerical reliability of the method. However, the algorithm is not stable in all
cases. A source of numerical instability was described and analyzed in [SB95].

3. [Gu98a] The basic approach of applying Algorithm 62.1 with pivoting can be made
provably stable by using a stronger pivoting method, somewhat analogous to a struc-
tured form of complete pivoting, and by introducing a refactorization of the generators
that is intended to limit growth of generator elements. The same approach can be
extended to solve structured least squares problems [Gu98b].

62.6 Fast Algorithms for Toeplitz-like Systems

A broad range of direct fast algorithms have been proposed over many years for the so-
lution of Toeplitz systems of equations. Iterative methods that exploit fast matrix-vector
multiplication and effective, fast preconditioners have also been widely used.

Definitions:

The Strang type preconditioner for a 2m × 2m Hermitian Toeplitz matrix T = [tj−k] is the

circulant matrix S with first row given by

s∗0 =
[
t0 t−1 · · · t−m t−m+1 · · · t−1

]
.

The Chan type preconditioner for an n×n Toeplitz matrix T is the circulant matrix S with

first row given by

s∗0 =
1

n

[
nt0 t−n+1 + (n− 1)t1 2t−n+2 + (n− 2)t2 · · · (n− 1)t−1 + tn−1

]
.

A multilevel Toeplitz matrix is a matrix T = [tj,k] with tj,k = tj−k and with rows and

columns arranged by lexicographic ordering of index vectors

j = (j1, j2, . . . , jp) and k = (k1, k2, . . . , kp).

For x ∈ Cn, let L(x) denote the n×n lower triangular Toeplitz matrix with x as its first column.

Facts:

1. Given an n× n positive definite Toeplitz matrix T satisfying

T − ZnTZ∗n = XΣ1,1X
∗,

Algorithm 62.2 can be applied to factor T by setting G = Zn. Only hyperbolic
rotations, and not Householder transformations, are required. This algorithm was
first described in this form in [Bar69]. It was later noted that the algorithm can be
interpreted as a reformulation in matrix terms of the classical Schur algorithm for
testing whether a power series is bounded in the interior of the unit circle [KS95].
The algorithm is numerically stable [BBH95].

2. Given an n × n positive definite Toeplitz T , the Levinson algorithm [Lev47] solves
a linear system using O(n2) operations. The algorithm can also be interpreted as
computing a triangular factorization of T−1.

3. The algorithms of [Hei94, GKO95, Gu98a, Gu98b] can all be applied to solve Toeplitz
systems by transforming a Toeplitz matrix to a Cauchy-like matrix using Eq. (62.13).
The algorithms of [Gu98a, Gu98b] give the highest guarantee of numerical stability
when the matrix is indefinite or non-Hermitian.

62-14 Handbook of Linear Algebra

4. [KC94] If T is Toeplitz, then A = T ∗T has displacement rank at most four with
respect to ∆(A) = A−ZnAZ∗n. Block Toeplitz-like matrices can be used to compute
QR factorizations of Toeplitz matrices. By applying n steps of the positive definite
generalized Schur algorithm to

A =

[
T ∗T T ∗

T 0

]
=

[
R∗

Q

] [
R Q∗

]
−
[
0 0
0 −QQ∗

]

with E = Zn⊕Zn, it is possible to determine the rows of R and Q∗ from the triangular
factors of A.

5. There are many other methods for fast QR factorization of Toeplitz and Toeplitz-like
matrices. Although the presentation is based on Cholesky downdating, the algorithms
of [Swe84, BBH86] are computationally similar to the generalized Schur algorithm
[KC94]. Factorization algorithms of this type can be shown to provide weakly stable
methods for the solution of Toeplitz least squares problems [SV97]. The methods of
[Cyb80, Nag93] involve an inverse QR factorization, which computes R−1 instead of
R. The method of [Ste07] generalizes the isometric Arnoldi algorithm of [Gra93] so
that it can be used to orthogonalize the columns of a Toeplitz-like matrix.

6. Toeplitz matrices allow fast matrix-vector multiplication. Using Eq. (62.12), mul-
tiplication of a vector by an n × n circulant can be performed using O(n log(n))
operations. An arbitrary m × n Toeplitz matrix T can be embedded as the leading
principal submatrix of an (m+ n− 1)× (m+ n− 1) circulant as in the following:

S =

[
T S12

S21 S22

]
=


t0 t1 t2 t−3 t−2 t−1
t−1 t0 t1 t2 t−3 t−2
t−2 t−1 t0 t1 t2 t−3
t−3 t−2 t−1 t0 t1 t2
t2 t−3 t−2 t−1 t0 t1
t1 t2 t−3 t−2 t−1 t0

 .

A matrix-vector product y = Tx involving an m × n Toeplitz matrix T can be
computed using O((m+n) log(m+n)) operations by embedding T in a circulant and
computing the product [

T S12

S21 S22

] [
x
0

]
=

[
y
z

]

using the fast Fourier transform and Eq. (62.12).
7. [GF74, HR84] For an n× n nonsingular, Hermitian Toeplitz matrix T , the Gohberg-

Semencul formula represents T−1 as the difference of products of lower triangular
Toeplitz matrices

T−1 = L(x)L(x)∗ − L(y)L(y)∗. (62.21)

The formula is also implicit in the Toeplitz inversion algorithm of [Tre64] and is
equivalent to

T−1 − ZnT−1Z∗n =
[
x y

]
Σ1,1

[
x∗

y∗

]

Fast Algorithms 62-15

so that x and y are columns of a generator matrix for T−1. These vectors can be
obtained in a variety of ways. See Section 62.8 for an O(n log2(n)) divide-and-conquer
algorithm. If x and y have been computed, Eq. (62.21) can be combined with circulant
embeddings of L(x) and L(y) and Eq. (62.12) to multiply a vector by T−1 using
O(n log(n)) operations.

8. [Cha88] The Chan type preconditioner is the closest circulant approximation to T in
the Frobenius norm.

9. [CS89, Cha89] Consider a family of Hermitian positive definite Toeplitz matrices Tn
that are generated from a positive function f(θ) > 0 defined on [0, 2π). In particular,
let the Fourier series of f(θ) be

f(θ) =

∞∑
j=−∞

tje
−ijθ

with t−j = tj and assume that {tj}∞j=−∞ ∈ l1. Let T be the infinite Toeplitz matrix

T = [tj−k]∞j,k=0 and let Tn be the n× n leading principal submatrix of T . Then Tn is

positive definite. If Sn is the Strang or Chan preconditioner for Tn then S−1n Tn has
eigenvalues clustered around 1 in the sense that for any ε > 0 there exist N and M > 0
such that for all n > N , at most M eigenvalues of S−1n Tn − I have absolute value
larger than ε. This is sufficient to show superlinear convergence of the preconditioned
conjugate gradient algorithm [GV96] applied to a system Tnx = b. If matrix-vector
multiplication by Tn and inversion of Sn are performed using Eq. (62.12) and the fast
Fourier transform, the complete algorithm requires O(n log(n)) operations.

10. Multilevel circulant matrices have been widely used and studied as preconditioners
for multilevel Toeplitz systems. Such systems have diverse applications, including
problems in image processing [HNO06]. This class of methods often works well in
practice. However, the clustering results are weaker than for ordinary Toeplitz systems
and it is not possible in general to guarantee superlinear convergence [CT99].

62.7 Fast Algorithms for Vandermonde Systems

Systems involving Vandermonde matrices, confluent Vandermonde matrices, and polyno-
mial Vandermonde matrices arise in polynomial interpolation, computation of quadrature
weights, and various problems in approximation. In addition to algorithms based on dis-
placement structure, there are several more specialized algorithms.

Facts:

1. General displacement techniques can be applied to factor an n × n Vandermonde
system using O(n2) operations. In particular, with δ = 0, the Sylvester form of
Algorithm 62.1 can be directly applied to the displacement equation (62.6) to compute
an LU factorization of V . If the corresponding rows of X and diagonal of Dv are
reordered correspondingly, partial pivoting can be used. In [KO97], this approach is
developed more generally, in a form applicable to polynomial Vandermonde matrices
in which the polynomials satisfy a three-term recurrence.

2. The transformation (62.15) can be used to transform a Vandermonde-like matrix
into a Cauchy-like matrix. The algorithm of [Gu98a] or [Gu98b] can then be used to
solve the corresponding Vandermonde linear system or least squares problem. This
approach is backward stable.

62-16 Handbook of Linear Algebra

Algorithm 62.3 (Primal Björck-Pereyra Algorithm)

Let V be an n×n Vandermonde matrix with distinct nodes {α1, . . . , αn}. The following

function computes the solution to the primal system V a = f .

function a = primalBP(α1, . . . , αn, f)

a := f

for k = 1, . . . , n

for j = n, n− 1, . . . , k + 1

aj := (aj − aj−1)/(αj − αj−k)

for k = n− 1, . . . , 1

for j = k, k + 1, . . . , n− 1

aj := aj − αkaj+1

3. The Björck-Pereyra algorithm [BP70] exploits the fact that a Vandermonde system
V a = f is equivalent to a polynomial interpolation problem with interpolation points
(αk, fk). Such a problem can be solved using Newton interpolation and a nested
product recurrence for computing the coefficients of the interpolating polynomial.
Interpreted in matrix terms, the process can be represented as

a = V −1f = U0 · · ·Un−1Ln−1 · · ·L0f ,

where the Uk are upper triangular and bidiagonal and the Lk are lower triangular
and bidiagonal. Multiplication by the Lk corresponds to computing the Newton form
of the interpolating polynomial. Multiplication by the Uk corresponds to multiplying
out the Newton interpolating polynomial to get the coefficients of the powers of α.
Given this factorization of V −1, transposition can be used to derive recurrences for
the dual Vandermonde system V ∗x = b. Algorithm 62.3 solves a primal Vander-
monde system. Algorithm 62.4 solves a dual Vandermonde system. Both algorithms
require O(n2) operations to solve an n× n system. The algorithms naturally extend
to the case of confluent Vandermonde systems [BE73], and also to polynomial Van-
dermonde systems for which the polynomials satisfy a three-term recurrence [Hig88].
The algorithm of [RO91] applies when the polynomials are Chebyshev polynomials.
The algorithm of [BEG07] applies in the case of Szëgo polynomials.

Algorithm 62.4 (Dual Björck-Pereyra Algorithm)

Let V be an n×n Vandermonde matrix with distinct nodes {α1, . . . , αn}. The following

function computes the solution to the dual system V ∗x = b.

function x = dualBP(α1, . . . , αn,b)

x := b

for k = 1, . . . , n

for j = n, n− 1, . . . , k + 1

xj := xj − αkxj−1
for k = n− 1, . . . , 1

for j = k + 1, . . . , n

xj := xj/(αj − αj−k)

for j = k, . . . , n− 1

xj := xj − xj+1

Fast Algorithms 62-17

4. The stability properties of the Björk-Pereyra algorithm are striking. Real Vander-
monde matrices are known to be ill-conditioned. In fact, it is shown in [Tyr94] that

an arbitrary real n × n Vandermonde matrix V satisfies κ2(V) ≥ 2n−2/
√
n1/2. Nev-

ertheless, as originally noted in [BP70], the solution of specific Vandermonde systems
using the Björck-Pereyra algorithms with real nodes is often surprisingly accurate.
This behavior is in part explained by an error analysis in [Hig87], which shows that if
0 ≤ α1 < α2 < · · · < αn and if the vectors f and b have components with alternating
signs, then the error in the computed solutions is small independent of the condition
number of V .

5. There are also O(n2) algorithms for the inversion of Vandermonde and related matri-
ces. Traub [Tra66] describes such an algorithm and gives a summary, with citations,
of the repeated discovery of the method by many authors.

62.8 Superfast Algorithms

Most fast algorithms solve an n×n linear system usingO(n2) operations. When implemented
with aid of the fast Fourier transform, various doubling procedures can sometimes be applied
to reduce the number of operations to O(n log2(n)) or O(n log3(n)). The Toeplitz case is
the most extensively studied, but such techniques can be applied broadly to matrices with
other displacement structures.

Algorithm 62.5 (Generic Superfast Divide-and-Conquer Inversion)

The is the recursive definition of a functionA−1 = inverse(A). In all references to matrices

passed to or returned by the function, it is assumed that a structured representation of

the matrix is used.

function A−1 = inverse(A)

Let n = number of rows of A[
A11 A12

A21 A22

]
= A, where A11 is n/2× n/2.

A−111 = inverse(A11).

AS = A22 −A21A
−1
11 A12

A−1S = inverse(AS)

A−1 be as in Eq. (62.22) with products computed using fast multiplication.

Facts:

For a given degree k polynomial p(z), let p(z) denote the polynomial obtained by conjugating
the coefficients of p(z) and let p̃(z) = zkp(1/z).

1. Given an n× n nonsingular matrix A with displacement structure and with nonzero
leading principal minor A11, the block inversion[

A11 A12

A21 A22

]−1
=

[
A−111 +A−111 A12A

−1
S A21A

−1
11 −A−111 A12A

−1
S

−A−1S A21A
−1
11 A−1S

]
, (62.22)

where AS = A22−A21A
−1
11 A12, can be arranged to exploit the fact that A21, A12, A−111 ,

and A−1S all inherit displacement structure from A. The products required to form

62-18 Handbook of Linear Algebra

the blocks of the inverse can then be formed using a fast multiplication algorithm,
typically using O(n log(n)) operations. The details vary with the structure of the
matrix A, but many algorithms follow the outline of Algorithm 62.5. The recursive
formulation assumes that all leading principal submatrices of A are nonsingular. This
approach was applied to Toeplitz matrices in [BA80] and to Cauchy-like matrices
in [Hei94]. A general formulation is given in [Pan01]. If the multiplication steps use
O(n log(n)) operations, then the structured inversion algorithm requires O(n log2(n))
operations. However, the constants hidden by this complexity estimate are typically
large.

2. [Hoo87, AG86, AG88] Consider an n×n positive definite Toeplitz matrix T satisfying

T − ZnTZ∗n =

 u0 v0
...

...
un−1 vn−1

Σ1,1

[
u0 · · · un−1
v0 · · · vn−1

]
.

The generators of T can be represented by polynomials, instead of a matrix, by
defining

u0(z) = u0 + u1z + · · ·+ un−1z
n−1 and v0(z) = v0 + v1z + · · ·+ vn−1z

n−1.

The Schur algorithm, applied for k steps to the generator polynomials, takes the form

[
uk(z) vk(z)

]
=
[
u0(z) v0(z)

] [a(0)k (z) b
(0)
k (z)

b̃
(0)
k (z) ã

(0)
k (z)

]
,

where uk(z) and vk(z) are the generator polynomials for the zero bordered Schur
complement of the leading k × k principal submatrix of T and[

a
(l)
k (z) b

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z)

]
=

k−1∏
j=l

1√
1− |ρj |2

[
1 ρj
ρj 1

] [
z 0
0 1

]
.

represents an accumulation of the generator transformations. If

φ(z) =
1

t0
(ã(0)n (z) + b(0)n (z)) = φ0 + φ1z + · · ·+ φn−1z

n−1,

then

T−1 − ZnT−1Z∗n =


φ0 0
φ1 φn−1
...

...
φn−1 φ1

Σ1,1

[
φ0 φ1 · · · φn−1
0 φn−1 · · · φ1

]
.

Thus, the polynomials give generators for T−1. Multiplication of a vector by T−1

can then be implemented using O(n log(n)) operations by embedding T−1 in a cir-
culant and using the fast Fourier transform. If all polynomial multiplications are

implemented using the fast Fourier transform, the polynomials a
(0)
n (z) and b

(0)
n (z)

can be computed with O(n log2(n)) operations using the doubling procedure shown
in Algorithm 62.6.

Fast Algorithms 62-19

Algorithm 62.6 (Superfast Positive Definite Toeplitz Inversion)

Given a Schur complement of a Toeplitz matrix in the form of the polynomials ul(z)

and vl(z) the following function performs k steps of the Schur algorithm. To perform a

complete inversion the function should be called with SFSschur(u0(z), v0(z), n).

function (ul+k(z), vl+k(z), a
(l)
k (z), b

(l)
k (z)) = SFSchur(ul(z), vl(z), k)

Let m = k/2.

(ul+m(z), vl+m(z), a
(l)
m (z), b

(l)
m (z)) = SFSchur(ul(z), vl(z),m)[

ul+m(z) vl+m(z)
]

=
[
ul(z) vl(z)

] [a(l)m (z) b
(l)
m (z)

b̃
(l)
m (z) ã

(l)
m (z)

]
.

(ul+k(z), vl+k(z), a
(l+m)
m (z), b

(l+m)
m (z)) = SFSchur(ul+m(z), vl+m(z),m)[

ul+k(z) vl+k(z)
]

=
[
ul+m(z) vl+m(z)

] [a(l+m)
m (z) b

(l+m)
m (z)

b̃
(l+m)
m (z) ã

(l+m)
m (z)

]
.[

a
(l)
k (z) b

(l)
k (z)

b̃
(l)
k (z) ã

(l)
k (z)

]
=

[
a
(l)
m (z) b

(l)
m (z)

b̃
(l)
m (z) ã

(l)
m (z)

][
a
(l+m)
m (z) b

(l+m)
m (z)

b̃
(l+m)
m (z) ã

(l+m)
m (z)

]

3. Using a transformation of a nonsymmetric Toeplitz matrix to a Cauchy form and an
associated interpolation problem, the algorithm of [VHK01] solves a nonsymmetric
Toeplitz system with complexity O(n log2(n)).

4. The algorithm of [Ste03] adapts the approach of [Hoo87, AG86] so as to solve a
Toeplitz system by using a divide-and-conquer form of back-substitution instead of
by structured multiplication by the inverse.

5. The algorithm of [CGS07] exploits the presence of approximate low-rank blocks in
a Cauchy-like matrix obtained from a transformation of a nonsymmetric Toeplitz
matrix. The resulting algorithm gives an approximation to a solution to a system
using O(n log(n)) operations.

References

[AG86] G.S. Ammar and W.B. Gragg. The implementation and use of the generalized Schur

algorithm. In C. I. Byrnes and A. Linquist, Eds., Computational and Combinatorial
Methods in Systems Theory, pp. 265–279. North Holland, Amsterdam, 1986.

[AG88] G.S. Ammar and W.B. Gragg. Superfast solution of real positive definite Toeplitz

systems. SIAM J. Matrix Anal. Appl., 9: 61–76, 1988.

[Bar69] E.H. Bareiss. Numerical solution of linear equations with Toeplitz and vector Toeplitz

matrices. Numerische Mathematik, 13: 404–424, 1969.

[BEG07] T. Bella, Y. Eidelman, I. Gohberg, I. Koltracht, and V. Olshevsky. A Björck-Pereyra-

type algorithm for Szegö-Vandermonde matrices based on properties of unitary hessen-

berg matrices. Lin. Alg. Appl., 420: 634–647, 2007.

[BA80] R.R. Bitmead and D.O. Anderson. Asymptotically fast solution of Toeplitz and related

systems. Lin. Alg. Appl., 34: 103–116, 1980.

[BE73] Å. Björck and T. Elfving. Algorithms for confluent Vandermonde systems. Numerische
Mathematik, 21: 130–137, 1973.

[BP70] Å. Björck and V. Pereyra. Solution of Vandermonde systems of equations. Math. Comp.,
24: 893–903, 1970.

[BBH86] A. Bojanczyk, R.P. Brent, and F. de Hoog. QR factorization of Toeplitz matrices.

Numerische Mathematik, 49: 81–94, 1986.

62-20 Handbook of Linear Algebra

[BBH95] A. Bojanczyk, R. Brent, F. de Hoog, and D. Sweet. One the Stability of the Bareiss

and related Toeplitz factorization algorithms. SIAM J. Sci. Stat. Comp., 16: 40–58,

1995.

[BBV87] A. Bojanczyk, R.P. Brent, P. Van Dooren, and F. de Hoog. A note on downdating the

Cholesky factorization. SIAM J. Sci. Stat. Comp., 8: 210–221, 1987.

[CT99] S.S. Capizzano and E. Tyrtyshnikov. Any circulant-like preconditioner for multilevel

matrices is not superlinear. SIAM J. Matrix Anal. Appl., 21: 431–439, 1999.

[Cha89] R.H. Chan. Circulant preconditioners for hermitian Toeplitz systems. SIAM J. Matrix
Anal. Appl., 10: 545–550, 1989.

[CS89] R.H. Chan and G. Strang. Toeplitz equations by conjugate gradients with circulant

preconditioner. SIAM J. Sci. Stat. Comp., 10: 104–119, 1989.

[Cha88] T.F. Chan. An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci.
Stat. Comp., 9: 766–771, 1988.

[CGS07] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu. A superfast algorithm for

Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl., 29: 1247–1266,

2007.

[Cyb80] G. Cybenko. The numerical stability of the Levinson-Durbin algorithm for Toeplitz

systems of equations. SIAM J. Sci. Stat. Comp., 1: 303–310, 1980.

[Dav79] P.J. Davis. Circulant Matrices. Wiley-Interscience, New York, 1979.

[FMK79] B. Friedlander, M. Morf, T. Kailath, and L. Ljung. New inversion formulas for matrices

classified in terms of their distance from Toeplitz matrix. Lin. Alg. Appl., 27: 31–60,

1979.

[GF74] I. Gohberg and I. Feldman. Convolution Equations and Projection Methods for Their
Solution. AMS, 1974.

[GKO95] I. Gohberg, T. Kailath, and V. Olshevesky. Fast Gaussian elimination with partial

pivoting for matrices with displacement structure. Math. Comp., 64: 1557–1576, 1995.

[GV96] G.H. Golub and C.F. Van Loan. Matrix Computations, 3rd ed. Johns Hopkins University

Press, Baltimore, 1996.

[Gra93] W.B. Gragg. Positive definite Toeplitz matrices, the Arnoldi process for isometric oper-

ators, and Gaussian quadrature on the unit circle. J. Comp. Appl. Math., 46: 183–198,

1993.

[Gu98a] M. Gu. Stable and efficient algorithms for structured systems of linear equations. SIAM
J. Matrix Anal. Appl., 19: 279–306, 1998.

[Gu98b] M. Gu. New fast algorithms for structured linear least squares problems. SIAM J.
Matrix Anal. Appl., 20: 244–269, 1998.

[HNO06] P.C. Hansen, J.G. Nagy, and D.P. O’Leary. Deblurring Images: Matrices, Spectra,
and Filtering. SIAM, 2006.

[Hei94] G. Heinig. Inversion of generalized Cauchy matrices and other classes of structured

matrices. In Linear Algebra in Signal Processing, pp. 95–114, 1994. The IMA Volumes

in Mathematics and Its Applications, Volume 69.

[HB97] G. Heinig and A. Bojanczyk. Transformation techniques for Toeplitz and Toeplitz-plus-

Hankel matrices. I. Transformations. Lin. Alg. Appl., 254: 193–226, 1997.

[HR84] G. Heinig and K. Rost. Algebraic Methods for Toeplitz-like Matrices and Operators.

Birkhäuser, Basel, 1984.

[Hig87] N.J. Higham. Error analysis of the Björck-Pereyra algorithms for solving Vandermonde

systems. Numerische Mathematik, 50: 613–632, 1987.

[Hig88] N.J. Higham. Fast solution of Vandermonde-like systems involving orthogonal polyno-

mials. IMA J. Numer. Anal., 8: 473–486, 1988.

[Hoo87] F. de Hoog. A new algorithm for solving Toeplitz systems of equations. Lin. Alg. Appl.,
88/89: 123–138, 1987.

Fast Algorithms 62-21

[KC94] T. Kailath and J. Chun. Generalized displacement structure for block-Toeplitz, Toeplitz-

block, and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl., 15: 114–128, 1994.

[KO97] T. Kailath and V. Olshevsky. Displacement-structure approach to polynomial Vander-

monde and related matrices. Lin. Alg. Appl., 261: 49–90, 1997.

[KS95] T. Kailath and A.H. Sayed. Displacement structure: theory and applications. SIAM
Review, 37: 297–386, 1995.

[Lev47] N. Levinson. The Weiner RMS error criterion in filter design and prediction. J. Math.
Phys., 25: 261–278, 1947.

[Nag93] J.G. Nagy. Fast inverse QR factorization for Toeplitz matrices. SIAM J. Sci. Comp.,
14: 1174–1193, 1993.

[Pan01] V. Pan. Structured Matrices and Polynomials: Unified Superfast Algorithms.

Birkhäuser, Boston, 2001.

[RO91] L. Reichel and G. Opfer. Chebyshev-Vandermonde systems. Math. Comp., 57: 703–721,

1991.

[SK95] A.H. Sayed and T. Kailath. Fast algorithms for generalized displacement structures and

lossless systems. Lin. Alg. Appl., 219: 49–78, 1995.

[Ste03] M. Stewart. A superfast Toeplitz solver with improved numerical stability. SIAM J.
Matrix Anal. Appl., 25: 669–693, 2003.

[Ste07] M. Stewart. A generalized isometric Arnoldi algorithm. Lin. Alg. Appl., 423: 183–208,

2007.

[SV97] M. Stewart and P. Van Dooren. Stability issues in the factorization of structured matrices.

SIAM J. Matrix Anal. Appl., 18: 104–118, 1997.

[Swe84] D.R. Sweet. Fast Toeplitz orthogonalization. Numer. Math., 43: 1–21, 1984.

[SB95] D.R. Sweet and R.P. Brent. Error analysis of a partial pivoting method for structured

matrices. In F. T. Luk, Ed., Advanced Signal Processing Algorithms, Proceedings of
SPIE-1995, Volume 2563, pp. 266–280, 1995.

[Tra66] J.F. Traub. Associated polynomials and uniform methods for the solution of linear

problems. SIAM Review, 8: 277–301, 1966.

[Tre64] W.F. Trench. An algorithm for the inversion of finite Toeplitz matrices. J. SIAM, 12:

515–522, 1964.

[Tyr94] E.E. Tyrtyshnikov. How bad are Hankel matrices. Numerische Mathematik, 67: 261–

269, 1994.

[VHK01] M. Van Barel, G. Heinig, and P. Kravanja. A stabilized superfast solver for nonsym-

metric Toeplitz systems. SIAM J. Matrix Anal. Appl., 23: 494–510, 2001.

